Towards the Efficient and Human Preference Aligned Diffusion Model-based Generation

Fu-Yun Wang

fywang0126@gmail.com

Diffusion Models: Markovian Perspective

- Assumption: $p(\boldsymbol{x}_{0:T}) = p(\boldsymbol{x}_T) \prod_{t=1}^T p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1} | \boldsymbol{x}_t)$
- Forward Process:
- Reverse Process: $q(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_t, \boldsymbol{x}_0) = \frac{q(\boldsymbol{x}_t \mid \boldsymbol{x}_{t-1}, \boldsymbol{x}_0)q(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_0)}{q(\boldsymbol{x}_t \mid \boldsymbol{x}_0)}$
 - Maximum Likelihood Estimation (MLE)

is Equivalent to

 $\operatorname*{arg\,min}_{\boldsymbol{\theta}} \mathbb{E}_{t \sim U\{2,T\}} \left[\mathbb{E}_{q(\boldsymbol{x}_t | \boldsymbol{x}_0)} \left[D_{\mathrm{KL}}(q(\boldsymbol{x}_{t-1} | \boldsymbol{x}_t, \boldsymbol{x}_0) \parallel p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1} | \boldsymbol{x}_t)) \right] \right]$

Vanilla Score Matching

- Energy-based model $p_{\theta}(\boldsymbol{x}) = \frac{1}{Z_{\theta}} e^{-f_{\theta}(\boldsymbol{x})}$
- Score-based model $\nabla_{\boldsymbol{x}} \log p_{\boldsymbol{\theta}}(\boldsymbol{x}) = \nabla_{\boldsymbol{x}} \log(\frac{1}{Z_{\boldsymbol{\theta}}} e^{-f_{\boldsymbol{\theta}}(\boldsymbol{x})})$ $= \nabla_{\boldsymbol{x}} \log \frac{1}{Z_{\boldsymbol{\theta}}} + \nabla_{\boldsymbol{x}} \log e^{-f_{\boldsymbol{\theta}}(\boldsymbol{x})}$ $= -\nabla_{\boldsymbol{x}} f_{\boldsymbol{\theta}}(\boldsymbol{x})$ $\approx s_{\boldsymbol{\theta}}(\boldsymbol{x})$
- Score Matching

$$\mathbb{E}_{p(oldsymbol{x})}\left[\left\| oldsymbol{s}_{oldsymbol{ heta}}(oldsymbol{x}) -
abla \log p(oldsymbol{x})
ight\|_2^2
ight]$$

Real Data Distribution

Disconnected

Non-overlapping modes

Vanilla Score Matching

- Limitations:
 - Poorly defined for real-world data

- Inaccurate score estimation for lowdensity region
- Poor sampling with large low-density region

Score-Based Generative Model

Score-Based Generative Model

- Limitations of vanilla score matching:
 - Poorly defined for real-world data

- Inaccurate score estimation for lowdensity region
- Poor sampling with large low-density region

- Advantages of score-based generative model
- The support of a Gaussian noise distribution is the entire space.
- Increase the area of each mode by adding noise.
- Different modes are connected by adding noise.

https://miro.medium.com/v2/resize:fit:1400/1*gumPfXwQYkNnnlGxAGUIRA.png

Diffusion Models: Stochastic Differential Equation Perspective

Probability Flow ODE:

A deterministic reverse process

$$d\mathbf{x} = \left[\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g(t)^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x})\right] dt$$

Exact Solution form of PF-ODE

$$oldsymbol{x}_t = rac{lpha_t}{lpha_s} oldsymbol{x}_s - lpha_t \int_{\lambda_s}^{\lambda_t} e^{-\lambda} \hat{oldsymbol{\epsilon}}_{ heta}(\hat{oldsymbol{x}}_{\lambda},\lambda) \mathrm{d}\lambda.$$

The only unknown term is the score function.

Train a neural network through score matching!

Diffusion Models: Slow Inference Speed

How to speed up the diffusion generation?

Reducing the number of function evaluation (NFE).

Better Solvers.

- Adversarial post-training.
- Parallel Sampling.
- Distillation.
- Naïve distillation.
- Guided distillation.
- Score distillation.
- Consistency distillation.
- Rectification.

DPM-Solver

$$\boldsymbol{x}_{t_{i-1} \to t_i} = \frac{\alpha_{t_i}}{\alpha_{t_{i-1}}} \tilde{\boldsymbol{x}}_{t_{i-1}} - \alpha_{t_i} \int_{\lambda_{t_{i-1}}}^{\lambda_{t_i}} e^{-\lambda} \hat{\boldsymbol{\epsilon}}_{\theta}(\hat{\boldsymbol{x}}_{\lambda}, \lambda) \mathrm{d}\lambda.$$

$$\hat{oldsymbol{\epsilon}}_{ heta}(\hat{oldsymbol{x}}_{\lambda},\lambda) = \sum_{n=0}^{k-1} rac{(\lambda-\lambda_{t_{i-1}})^n}{n!} \hat{oldsymbol{\epsilon}}_{ heta}^{(n)}(\hat{oldsymbol{x}}_{\lambda_{t_{i-1}}},\lambda_{t_{i-1}}) + \mathcal{O}((\lambda-\lambda_{t_{i-1}})^k),$$

$$\boldsymbol{x}_{t_{i-1} \to t_{i}} = \frac{\alpha_{t_{i}}}{\alpha_{t_{i-1}}} \tilde{\boldsymbol{x}}_{t_{i-1}} - \alpha_{t_{i}} \sum_{n=0}^{k-1} \hat{\boldsymbol{\epsilon}}_{\theta}^{(n)}(\hat{\boldsymbol{x}}_{\lambda_{t_{i-1}}}, \lambda_{t_{i-1}}) \int_{\lambda_{t_{i-1}}}^{\lambda_{t_{i}}} e^{-\lambda} \frac{(\lambda - \lambda_{t_{i-1}})^{n}}{n!} \mathrm{d}\lambda + \mathcal{O}(h_{i}^{k+1}),$$

Diffusion Models: Slow Inference Speed

How to speed up the diffusion generation?

- Reducing the number of function evaluation (NFE).
 - Better Solvers.
 - Adversarial post-training.

Parallel Sampling.

- Distillation.
 - Naïve distillation.
 - Guided distillation.
 - Score distillation.
 - Consistency distillation.
 - Rectification.

Picard Iteration

$$oldsymbol{x}_t = oldsymbol{x}_0 + \int_0^t s(oldsymbol{x}_u, u) du.$$

$$\boldsymbol{x}_t^{k+1} = \boldsymbol{x}_0^k + \int_0^t s(\boldsymbol{x}_u^k, u) du.$$

Lower Bound of Picard Iteration = Sequential Denoising

$$\begin{aligned} \boldsymbol{x}_{t+1}^{k+1} &= \boldsymbol{x}_0^k + \frac{1}{T} \sum_{i=0}^t s(\boldsymbol{x}_i^k, \frac{i}{T}) \\ &= \left(\boldsymbol{x}_0^k + \frac{1}{T} \sum_{i=0}^{t-1} s(\boldsymbol{x}_i^k, \frac{i}{T}) \right) + \frac{1}{T} s(\boldsymbol{x}_t^k, \frac{t}{T}) \\ &= \boldsymbol{x}_t^{k+1} + \frac{1}{T} s(\boldsymbol{x}_t^k, \frac{t}{T}) \\ &= \boldsymbol{x}_t^{k+1} + \frac{1}{T} s(h_{t-1}(\dots h_2(h_1(\boldsymbol{x}_0))), \frac{t}{T}) \\ &= \boldsymbol{x}_t^\star + \frac{1}{T} s(\boldsymbol{x}_t^\star, \frac{t}{T}) = \boldsymbol{x}_{t+1}^\star. \end{aligned}$$

Parareal Algorithm

Fine Solver (Parallel) Coarse Solver (Sequential)

Diffusion Models: Slow Inference Speed

How to speed up the diffusion generation?

- Reducing the number of function evaluation (NFE).
 - Better Solvers.
 - Adversarial post-training.
 - Parallel Sampling.
- Distillation.
 - Naïve distillation.
 - Guided distillation.
 - Score distillation.
 - Consistency distillation.
 - Rectification.

Understanding Diffusion Models from the PF-ODE path

We know the derivative w.r.t. time t.

Distillation Techniques: Progressive Distillation

Algorithm 2 Progressive distillation **Require:** Trained teacher model $\hat{\mathbf{x}}_n(\mathbf{z}_t)$ **Require:** Data set \mathcal{D} **Require:** Loss weight function w()**Require:** Student sampling steps N for K iterations do $\theta \leftarrow \eta$ ▷ Init student from teacher while not converged do $\mathbf{x}\sim \mathcal{D}$ $t = i/N, \ i \sim Cat[1, 2, \dots, N]$ $\epsilon \sim N(0, I)$ $\mathbf{z}_t = \alpha_t \mathbf{x} + \sigma_t \epsilon$ # 2 steps of DDIM with teacher $t' = t - 0.5/N, \quad t'' = t - 1/N$ $\mathbf{z}_{t'} = \alpha_{t'} \hat{\mathbf{x}}_{\eta} (\mathbf{z}_t) + \frac{\sigma_{t'}}{\sigma_t} (\mathbf{z}_t - \alpha_t \hat{\mathbf{x}}_{\eta} (\mathbf{z}_t))$ $\mathbf{z}_{t''} = \alpha_{t''} \hat{\mathbf{x}}_{\eta}(\mathbf{z}_{t'}) + \frac{\sigma_{t''}}{\sigma_{t'}} (\mathbf{z}_{t'} - \alpha_{t'} \hat{\mathbf{x}}_{\eta}(\mathbf{z}_{t'}))$ $\tilde{\mathbf{x}} = \frac{\mathbf{z}_{t''} - (\sigma_{t''}/\sigma_t)\mathbf{z}_t}{\alpha_{t''} - (\sigma_{t''}/\sigma_t)\alpha_t}$ > Teacher $\hat{\mathbf{x}}$ target $\lambda_t = \log[\alpha_t^2/\sigma_t^2]$ $L_{\theta} = w(\lambda_t) \| \tilde{\mathbf{x}} - \hat{\mathbf{x}}_{\theta}(\mathbf{z}_t) \|_2^2$ $\theta \leftarrow \theta - \gamma \nabla_{\theta} L_{\theta}$ end while ▷ Student becomes next teacher $\eta \leftarrow \theta$ $N \leftarrow N/2$ > Halve number of sampling steps end for

Distillation Techniques: Consistency Distillation

Distillation Techniques: Phased Consistency Distillation

Algorithm 1 Phased Consistency Distillation with CFG-augmented ODE solver (PCD)

Input: dataset \mathcal{D} , initial model parameter $\boldsymbol{\theta}$, learning rate η , ODE solver $\Psi(\cdot, \cdot, \cdot, \cdot)$, distance metric $d(\cdot, \cdot)$, EMA rate μ , noise schedule α_t , σ_t , guidance scale $[w_{\min}, w_{\max}]$, number of ODE step k, discretized timesteps $t_0 = \epsilon < t_1 < t_2 < \cdots < t_N = T$, edge timesteps $s_0 = t_0 < s_1 < s_2 < \cdots < s_M = t_N \in \{t_i\}_{i=0}^N$ to split the ODE trajectory into M sub-trajectories. Training data : $\mathcal{D}_{\mathbf{x}} = \{(\mathbf{x}, \mathbf{c})\}$ $\theta^- \leftarrow \check{\theta}$ repeat Sample $(\boldsymbol{z}, \boldsymbol{c}) \sim \mathcal{D}_{\boldsymbol{z}}, n \sim \mathcal{U}[0, N-k]$ and $\omega \sim [\omega_{\min}, \omega_{\max}]$ Sample $\mathbf{x}_{t_{n+k}} \sim \mathcal{N}(\alpha_{t_{n+k}} \mathbf{z}; \sigma_{t_{n+k}}^2 \mathbf{I})$ Determine $[s_m, s_{m+1}]$ given n $\mathbf{x}_{t_n}^{\phi} \leftarrow (1+\omega)\Psi(\mathbf{x}_{t_{n+k}}, t_{n+k}, t_n, \mathbf{c}) - \omega\Psi(\mathbf{x}_{t_{n+k}}, t_{n+k}, t_n, \emptyset)$ $\tilde{\mathbf{x}}_{s_m} = \boldsymbol{f}_{\boldsymbol{\theta}}^m(\mathbf{x}_{t_{n+k}}, t_{n+k}, \boldsymbol{c}) \text{ and } \hat{\mathbf{x}}_{s_m} = \boldsymbol{f}_{\boldsymbol{\theta}^-}(\mathbf{x}_{t_n}^{\boldsymbol{\phi}}, t_n, \boldsymbol{c})$ Obtain $\tilde{\mathbf{x}}_s$ and $\hat{\mathbf{x}}_s$ through adding noise to $\tilde{\mathbf{x}}_{s_m}$ and $\hat{\mathbf{x}}_{s_m}$ $\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}^{-}) = d(\tilde{\mathbf{x}}_{s_m}, \hat{\mathbf{x}}_{s_m}) + \lambda(\text{ReLU}(1 + \tilde{\mathbf{x}}_s) + \text{ReLU}(1 - \hat{\mathbf{x}}_s))$ $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}^{-})$ $\boldsymbol{\theta}^- \leftarrow \operatorname{stopgrad}(\mu \boldsymbol{\theta}^- + (1-\mu)\boldsymbol{\theta})$ until convergence

Application: AnimateLCM

• AnimateLCM support

- NOTE: You will need to use autoselect or lcm or lcm[100_ots] beta_schedule. To use fully with LCM, be sure to use appropriate LCM lora, use the lcm sampler_name in KSampler nodes, and lower cfg to somewhere around 1.0 to 2.0. Don't forget to decrease steps (minimum = ~4 steps), since LCM converges faster (less steps). Increase step count to increase detail as desired.
- <u>AnimateLCM-I2V</u> support, big thanks to <u>Fu-Yun Wang</u> for providing me the original diffusers code he created during his work on the paper
 - NOTE: Requires same settings as described for AnimateLCM above. Requires Apply AnimateLCM-I2V Model Gen2 node usage so that ref_latent can be provided; use Scale Ref Image and VAE Encode node to preprocess input images. While this was intended as an img2video model, I found it works best for vid2vid purposes with ref_drift=0.0, and to use it for only at least 1 step before switching over to other models via chaining with toher Apply AnimateDiff Model (Adv.) nodes. The apply_ref_when_disabled can be set to True to allow the img_encoder to do its thing even when the end_percent is reached. AnimateLCM-I2V is also extremely useful for maintaining coherence at higher resolutions (with ControlNet and SD LoRAs active, I could easily upscale from 512x512 source to 1024x1024 in a single pass). TODO: add examples

Downloads last month

han

73,760

Application: AnimateLCM

Consistency Training

Consistency Training

Ground Truth of Score Estimation: Stable Consistency Tuning

$$\begin{split} \nabla_{\mathbf{x}_{t}} \log \mathbb{P}_{t}(\mathbf{x}_{t} \mid \boldsymbol{c}) &= \mathbb{E}_{\mathbb{P}(\mathbf{x}_{0} \mid \mathbf{x}_{t}, \boldsymbol{c})} \left[\nabla_{\mathbf{x}_{t}} \log \mathbb{P}_{t}(\mathbf{x}_{t} \mid \mathbf{x}_{0}, \boldsymbol{c}) \right] \\ &= \mathbb{E}_{\mathbb{P}(\mathbf{x}_{0} \mid \boldsymbol{c})} \left[\frac{\mathbb{P}(\mathbf{x}_{0} \mid \mathbf{x}_{t}, \boldsymbol{c})}{\mathbb{P}(\mathbf{x}_{0} \mid \boldsymbol{c})} \nabla_{\mathbf{x}_{t}} \log \mathbb{P}_{t}(\mathbf{x}_{t} \mid \mathbf{x}_{0}, \boldsymbol{c}) \right] \\ &= \mathbb{E}_{\mathbb{P}(\mathbf{x}_{0} \mid \boldsymbol{c})} \left[\frac{\mathbb{P}(\mathbf{x}_{t} \mid \mathbf{x}_{0}, \boldsymbol{c})}{\mathbb{P}(\mathbf{x}_{t} \mid \boldsymbol{c})} \nabla_{\mathbf{x}_{t}} \log \mathbb{P}_{t}(\mathbf{x}_{t} \mid \mathbf{x}_{0}, \boldsymbol{c}) \right] \\ &= \mathbb{E}_{\mathbb{P}(\mathbf{x}_{0} \mid \boldsymbol{c})} \left[\frac{\mathbb{P}(\mathbf{x}_{t} \mid \mathbf{x}_{0})}{\mathbb{P}(\mathbf{x}_{t} \mid \boldsymbol{c})} \nabla_{\mathbf{x}_{t}} \log \mathbb{P}_{t}(\mathbf{x}_{t} \mid \mathbf{x}_{0}) \right] \\ &\approx \frac{1}{n} \sum_{\{\mathbf{x}_{0}^{(i)}\} \sim \mathbb{P}(\mathbf{x}_{0} \mid \boldsymbol{c})} \frac{\mathbb{P}(\mathbf{x}_{t} \mid \mathbf{x}_{0}^{(i)})}{\mathbb{P}(\mathbf{x}_{t} \mid \boldsymbol{c})} \nabla_{\mathbf{x}_{t}} \log \mathbb{P}_{t}(\mathbf{x}_{t} \mid \mathbf{x}_{0}^{(i)}) \\ &\approx \frac{1}{n} \sum_{\{\mathbf{x}_{0}^{(i)}\} \sim \mathbb{P}(\mathbf{x}_{0} \mid \boldsymbol{c})} \frac{\mathbb{P}(\mathbf{x}_{t} \mid \mathbf{x}_{0}^{(i)})}{\sum_{\mathbf{x}_{0}^{(j)} \in \{\mathbf{x}_{0}^{(i)}\}} \mathbb{P}(\mathbf{x}_{t} \mid \mathbf{x}_{0}^{(j)}, \boldsymbol{c})}} \nabla_{\mathbf{x}_{t}} \log \mathbb{P}_{t}(\mathbf{x}_{t} \mid \mathbf{x}_{0}^{(i)}) \\ &= \frac{1}{n} \sum_{\{\mathbf{x}_{0}^{(i)}\} \sim \mathbb{P}(\mathbf{x}_{0} \mid \boldsymbol{c})} \frac{\mathbb{P}(\mathbf{x}_{t} \mid \mathbf{x}_{0}^{(i)})}{\sum_{\mathbf{x}_{0}^{(j)} \in \{\mathbf{x}_{0}^{(i)}\}} \mathbb{P}(\mathbf{x}_{t} \mid \mathbf{x}_{0}^{(j)})}} \nabla_{\mathbf{x}_{t}} \log \mathbb{P}_{t}(\mathbf{x}_{t} \mid \mathbf{x}_{0}^{(i)}) \end{split}$$

Distillation Techniques: Score Distillation

Algorithm 1 SwiftBrush Distillation	
1: Require : a pretrained text-to-image teacher ϵ_{ψ} , a	
LoRA teacher ϵ_{ϕ} , a student model f_{θ} , two learning rates	
η_1 and η_2 , a weighting function ω , a prompts dataset	
Y, the maximum number of time steps T and the noise	
schedule $\{(\alpha_t, \sigma_t)\}_{t=1}^T$ of the teacher model	
2: Initialize: $\phi \leftarrow \psi, \theta \leftarrow \psi$	
3: while not converged do	
4: Sample input noise $z \sim \mathcal{N}(0, I)$	
5: Sample text caption input $y \sim Y$	
6: Compute student output $\hat{x}_0 = f_{\theta}(z, y)$	
7: Sample timestep $t \sim \mathcal{U}(0.02T, 0.98T)$	
8: Sample added noise $\epsilon \sim \mathcal{N}(0, I)$	
9: Compute noisy sample $\hat{x}_t = \alpha_t \hat{x}_0 + \sigma_t \epsilon$	
10: $\theta \leftarrow \theta - \eta_1 \left[\omega(t) \left(\epsilon_{\psi}(\hat{x}_t, t, y) - \epsilon_{\phi}(\hat{x}_t, t, y) \right) \frac{\partial \hat{x}_0}{\partial \theta} \right]$	
11: Sample timestep $t' \sim \mathcal{U}(0,T)$	
12: Sample added noise $\epsilon' \sim \mathcal{N}(0, I)$	
13: Compute noisy sample $\hat{x}_{t'} = \alpha_{t'} \hat{x}_0 + \sigma_{t'} \epsilon'$	
14: $\phi \leftarrow \phi - \eta_2 abla_\phi \ \epsilon_\phi(\hat{x}_{t'}, t', y) - \epsilon' \ ^2$	
15: end while	
16: return trained student model f_{θ}	

Distillation Techniques: Score Distillation

$$\mathcal{L}(\theta) = \mathcal{D}^{[0,T]}(p_{\theta},q) = \int_{t=0}^{T} w(t) \mathbb{E}_{\boldsymbol{x}_{t} \sim \pi_{t}} \left[\mathbf{d} \left(\boldsymbol{s}_{p_{\theta,t}}(\boldsymbol{x}_{t}) - \boldsymbol{s}_{q_{t}}(\boldsymbol{x}_{t}) \right) \right] \mathrm{d}t,$$

-

Generator $g_ heta: p_z o p_{m heta}$, $p_{ heta,t} = p_ heta * \mathcal{N}(0,I)$, $s_{ heta,t}(\mathbf{x}_t) =
abla_{\mathbf{x}_t} \log p_{ heta,t}(\mathbf{x}_t)$

impossible to compute $rac{d}{ heta} s_{ heta,t}(\mathbf{x}_t)$

Score Divergence Gradient Theorem

$$\mathcal{L}(\theta) = \mathcal{D}^{[0,T]}(p_{\theta},q) = \int_{t=0}^{T} w(t) \mathbb{E}_{\boldsymbol{x}_{t} \sim \pi_{t}} \left[\mathbf{d} \left(\boldsymbol{s}_{p_{\theta,t}}(\boldsymbol{x}_{t}) - \boldsymbol{s}_{q_{t}}(\boldsymbol{x}_{t}) \right) \right] \mathrm{d}t,$$

$$\mathbb{E}_{\boldsymbol{x}_{t} \sim p_{\mathrm{sg}[\theta],t}} \left[\mathbf{d}'(\boldsymbol{s}_{p_{\theta,t}}(\boldsymbol{x}_{t}) - \boldsymbol{s}_{q_{t}}(\boldsymbol{x}_{t})) \frac{\partial}{\partial \theta} \boldsymbol{s}_{p_{\theta,t}(\boldsymbol{x}_{t})} \right]$$

$$= -\frac{\partial}{\partial \theta} \mathbb{E}_{\boldsymbol{x}_{t} \mid \boldsymbol{x}_{0} \sim q_{t}(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{0})} \left[\left\{ \mathbf{d}'(\boldsymbol{s}_{p_{\mathrm{sg}[\theta],t}}(\boldsymbol{x}_{t}) - \boldsymbol{s}_{q_{t}}(\boldsymbol{x}_{t})) \right\}^{T} \left\{ \boldsymbol{s}_{p_{\mathrm{sg}[\theta],t}}(\boldsymbol{x}_{t}) - \nabla_{\boldsymbol{x}_{t}} \log q_{t}(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{0}) \right\} \right].$$

$$(3.6)$$

Simplify

$$oldsymbol{d}_\psi(oldsymbol{x}_t,t) - oldsymbol{x}_0$$

Ignore

Application: Casual Vid

Distillation Techniques: Rectified Flow

Advantages:

- High-quality few-step generation.
- Flexibility on inference steps.
- Simple forms.

Distillation Techniques: Rectified Flow

Diffusion Models: A (relative) Unified Perspective

The Magic of Rectified Flow: Retraining with Matched Noise-Sample Pairs

Algorithm 1 Flow Matching <i>v</i> -Prediction	Algorithm 3 Rectified Flow <i>v</i> -Prediction
Input: Sample \mathbf{x}_0 from the data distribution	Input: noise-data pair $(\epsilon, \hat{\mathbf{x}}_0)$
Sample x_0 from the data distribution Sample time t from a predefined schedule or uniformly from $\begin{bmatrix} 0 & 1 \end{bmatrix}$	Sample time t from a predefined schedule or uniformly from $\begin{bmatrix} 0 & 1 \end{bmatrix}$
Sample noise ϵ from normal distribution	Sample noise ϵ from normal distribution
Compute $\mathbf{x}_t : \mathbf{x}_t = (1-t) \cdot \mathbf{x}_0 + t \cdot \boldsymbol{\epsilon}$ Predict velocity $\hat{\boldsymbol{\alpha}}$ using the model: $\hat{\boldsymbol{\alpha}}$ —	Compute $\mathbf{x}_t : \mathbf{x}_t = (1-t) \cdot \hat{\mathbf{x}}_0 + t \cdot \boldsymbol{\epsilon}$ Prodict valuatity $\hat{\mathbf{u}}$ using the model: $\hat{\mathbf{u}}$ —
Model (\mathbf{x}_t, t)	Model (\mathbf{x}_t, t)
Compute loss: $\mathcal{L} = \ \hat{\boldsymbol{v}} - (\mathbf{x}_0 - \boldsymbol{\epsilon})\ _2^2$	Compute loss: $\mathcal{L} = \ \hat{v} - (\hat{\mathbf{x}}_0 - \boldsymbol{\epsilon})\ _2^2$
Backpropagate and update parameters	Backpropagate and update parameters

Rectified Flow Training Is a Subset of Diffusion Training

Algorithm 1 Flow Matching *v*-Prediction

Input:

Sample \mathbf{x}_0 from the data distribution Sample time t from a predefined schedule or uniformly from [0, 1]Sample noise $\boldsymbol{\epsilon}$ from normal distribution Compute $\mathbf{x}_t : \mathbf{x}_t = (1 - t) \cdot \mathbf{x}_0 + t \cdot \boldsymbol{\epsilon}$ Predict velocity $\hat{\boldsymbol{v}}$ using the model: $\hat{\boldsymbol{v}} =$ Model (\mathbf{x}_t, t) Compute loss: $\mathcal{L} = \|\hat{\boldsymbol{v}} - (\mathbf{x}_0 - \boldsymbol{\epsilon})\|_2^2$ Backpropagate and update parameters Algorithm 2 Diffusion Training ϵ -Prediction

Input: α_t, σ_t

Sample \mathbf{x}_0 from the data distribution Sample time t from a predefined schedule or uniformly from [0, 1]Sample noise $\boldsymbol{\epsilon}$ from normal distribution Compute $\mathbf{x}_t : \mathbf{x}_t = \alpha_t \cdot \mathbf{x}_0 + \sigma_t \cdot \boldsymbol{\epsilon}$ Predict noise $\hat{\boldsymbol{\epsilon}}$ using the model: $\hat{\boldsymbol{\epsilon}} =$ Model (\mathbf{x}_t, t) Compute loss: $\mathcal{L} = \|\hat{\boldsymbol{\epsilon}} - \boldsymbol{\epsilon}\|_2^2$ Backpropagate and update parameters

Rectified Diffusion: Extending Rectified Flow to General Diffusion Models

Algorithm 4 Rectified Diffusion ϵ -Prediction		
Input: noise-data pair $(\epsilon, \hat{\mathbf{x}}_0), \alpha_t, \sigma_t$		
Sample x_0 from the data distribution		
Sample time t from a predefined schedule or		
uniformly from $[0,1]$		
Sample noise ϵ from normal distribution		
Compute $\mathbf{x}_t : \mathbf{x}_t = \alpha_t \cdot \hat{\mathbf{x}}_0 + \sigma_t \cdot \boldsymbol{\epsilon}$		
Predict noise $\hat{\epsilon}$ using the model: $\hat{\epsilon}$ =		
$Model(\mathbf{x}_t, t)$		
Compute loss: $\mathcal{L} = \ \hat{\boldsymbol{\epsilon}} - \boldsymbol{\epsilon}\ _2^2$		
Backpropagate and update parameters		

Rectified Diffusion: the Essential Training Target Is First-Order Approximated ODE

Important points of first-order approximated ODE:

It has the same form of predefined diffusion forms.

$$\mathbf{x}_t = lpha_t \mathbf{x}_0 + \sigma_t \boldsymbol{\epsilon}$$

■ It can be inherently curved.

It can be transformed into straight lines with timestep dependent scaling.

$$\mathbf{y}_t = \frac{\alpha_t}{\sigma_t} \mathbf{x}_0 + \boldsymbol{\epsilon}$$

Rectified Diffusion Vs Rectified Flow

Rectified Diffusion Vs Rectified Flow

Rectified-Flow

Rectified-Diffusion

Human Preference Learning

Three ways for Preference Optimization:

- Differential Reward
- Reinforcement Learning
- Direct Preference Optimization

Reinforcement Learning

The generation process of generative models can be seen as Markov decision process (MDP)

- Large language models.
 - Token-by-token prediction.
 - Each token sampling can be seen as an action following the implicitly defined policy.
 - All the generated tokens can be seen as state.
 - Reward Models: LLMs.
- Diffusion models.
 - Step-by-step prediction.
 - Each step can be seen as an action following the implicitly defined policy.
 - Last denoised results can be seen as state.
 - Reward models: VLMs or CLIP.

Direct Preference Optimization

$$\max_{\pi} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi} \left[r(x, y) \right] - \beta \mathbb{D}_{\mathrm{KL}} \left[\pi(y|x) || \pi_{\mathrm{ref}}(y|x) \right]$$

$$\pi(y|x) = \pi^*(y|x) = rac{1}{Z(x)} \pi_{ ext{ref}}(y|x) \exp\left(rac{1}{eta} r(x,y)
ight)$$

$$r^*(x,y) = \beta \log \frac{\pi^*(y|x)}{\pi_{\text{ref}}(y|x)} + \beta \log Z(x)$$

Direct Preference Optimization

$$p^{*}(y_{1} \succ y_{2}|x) = \frac{\exp\left(\beta \log \frac{\pi^{*}(y_{1}|x)}{\pi_{\mathrm{ref}}(y_{1}|x)} + \beta \log Z(x)\right)}{\exp\left(\beta \log \frac{\pi^{*}(y_{1}|x)}{\pi_{\mathrm{ref}}(y_{1}|x)} + \beta \log Z(x)\right) + \exp\left(\beta \log \frac{\pi^{*}(y_{2}|x)}{\pi_{\mathrm{ref}}(y_{2}|x)} + \beta \log Z(x)\right)}$$
$$= \frac{1}{1 + \exp\left(\beta \log \frac{\pi^{*}(y_{2}|x)}{\pi_{\mathrm{ref}}(y_{2}|x)} - \beta \log \frac{\pi^{*}(y_{1}|x)}{\pi_{\mathrm{ref}}(y_{1}|x)}\right)}{1 + \exp\left(\beta \log \frac{\pi^{*}(y_{1}|x)}{\pi_{\mathrm{ref}}(y_{1}|x)} - \beta \log \frac{\pi^{*}(y_{2}|x)}{\pi_{\mathrm{ref}}(y_{2}|x)}\right)}{1 + \exp\left(\beta \log \frac{\pi^{*}(y_{1}|x)}{\pi_{\mathrm{ref}}(y_{1}|x)} - \beta \log \frac{\pi^{*}(y_{2}|x)}{\pi_{\mathrm{ref}}(y_{2}|x)}\right)}\right).$$

Differential Reward

Classifier-free guidance

$$\nabla_{\boldsymbol{x}_t} \log \mathbb{P}_{\boldsymbol{\theta}}(\boldsymbol{x}_t | \boldsymbol{c}; t) + \nabla_{\boldsymbol{x}_t} \log \left[\frac{\mathbb{P}_{\boldsymbol{\theta}}(\boldsymbol{x}_t | \boldsymbol{c}; t)}{\mathbb{P}_{\boldsymbol{\theta}}(\boldsymbol{x}_t | \boldsymbol{c}'; t)} \right]^{\omega}$$

$$\boldsymbol{\epsilon}_{\boldsymbol{\theta}}^{\omega} = (\omega+1)\boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, \boldsymbol{c}, t) - \omega\boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, \boldsymbol{c}', t)$$

$$\boldsymbol{\epsilon}_{\boldsymbol{\theta}}^{\omega} = (\omega+1)\boldsymbol{\epsilon}_{\boldsymbol{\theta}_{pos}}(\boldsymbol{x}_t, \boldsymbol{c}, t) - \omega\boldsymbol{\epsilon}_{\boldsymbol{\theta}_{neg}}(\boldsymbol{x}_t, \boldsymbol{c}', t)$$

$$abla_{oldsymbol{x}_t} \log \mathbb{P}_{oldsymbol{ heta}}(oldsymbol{x}_t | oldsymbol{c}; t) +
abla_{oldsymbol{x}_t} \log \left[rac{\mathbb{P}_{oldsymbol{ heta}}(oldsymbol{x}_t | oldsymbol{c}; t)}{\mathbb{P}_{oldsymbol{ heta}}(oldsymbol{x}_t | oldsymbol{c}'; t)}
ight]^{\omega}$$

$$\boldsymbol{\epsilon}_{\boldsymbol{\theta}}^{\omega} = (\omega+1)\boldsymbol{\epsilon}_{\boldsymbol{\theta}_{pos}}(\boldsymbol{x}_t, \boldsymbol{c}, t) - \omega\boldsymbol{\epsilon}_{\boldsymbol{\theta}_{neg}}(\boldsymbol{x}_t, \boldsymbol{c}', t)$$

To train Diffusion-NPO, we only need one line code.

We only need one line code for Negative Preference Optimization

- Reinforcement learning or differential reward
 - Negating the output of reward model

$$R_{\text{NPO}}(\mathbf{x}, \boldsymbol{c}) = 1 - R(\mathbf{x}, \boldsymbol{c})$$

- Direct preference optimization
 - Switch the order of preference annotations

$$r = (\mathbf{x}_0, \mathbf{x}_1, oldsymbol{c})$$
 $r_{ ext{NPO}} = (\mathbf{x}_1, \mathbf{x}_0, oldsymbol{c})$

Prompt: "Preteen girls with no underware neither other clothes in a sofa with a childish faces ... (over 30 words)" w/o NPO w/ NPO w/o NPO w/ NPO

Prompt: "An anime woman"

References

- [1] Denoising Diffusion Probabilistic Models.
- [2] Denoising Diffusion Implicit Models.
- [3] Score-Based Generative Modeling through Stochastic Differential Equations.
- [4] Flow Matching for Generative Modeling.
- [5] Elucidating the Design Space of Diffusion-Based Generative Models.
- [6] DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps.
- [7] Discrete Flow Matching.
- [8] Consistency Models.
- [9] Consistency Models Made Easy.
- [10] Latent Consistency Models: Synthesizing High-Resolution Images with Few-step Inference.
- [11] Phased Consistency Model.
- [12] Multistep Consistency Models.
- [13] PeRFlow: Piecewise Rectified Flow as Universal Plug-and-Play Accelerator.
- [14] Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow.
- [15] InstaFlow: One Step is Enough for High-Quality Diffusion-Based Text-to-Image Generation.
- [16] StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis.
- [17] Stable Consistency Tuning: Understanding and Improving Consistency Models.
- [18] SwiftBrush : One-Step Text-to-Image Diffusion Model with Variational Score Distillation.
- [19] One-step Diffusion with Distribution Matching Distillation.
- [20] Progressive Distillation for Fast Sampling of Diffusion Models

Our Works

[1] Stable Consistency Tuning: Understanding and Improving Consistency Models.

[2] Rectified Diffusion: Straightness Is Not Your Need in Rectified Flow.

[3] Phased Consistency Model.

[4] AnimateLCM: Computation-Efficient Personalized Style Video Generation without Personalized Video Data.

[5] Diffusion-NPO: Negative Preference Optimization for Better Preference Aligned Generation of Diffusion Models

Thank you!

Fu-Yun Wang fywang@link.cuhk.edu.hk