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Diffusion Models: Markovian Perspective

◼ Assumption:

◼  

◼ Forward Process: 

◼  

◼  

◼ Reverse Process:

◼  

◼ Maximum Likelihood Estimation (MLE) 

is Equivalent to



◼ Energy-based model

◼  

◼ Score-based model

◼   

◼ Score Matching

Vanilla Score Matching



◼ Sparse

◼ Disconnected

◼ Non-overlapping modes

Real Data Distribution



Vanilla Score Matching

◼ Limitations:

◼ Poorly defined for real-world data

◼ Inaccurate score estimation for low-

density region

◼ Poor sampling with large low-density 

region



◼ Extending the distribution

◼  

◼ Score Matching for all noise levels

◼  

Score-Based Generative Model

https://miro.medium.com/v2/resize:fit:1400/1*gumPfXwQYkNnnlGxAGUlRA.png



◼ Advantages of score-based generative model 

◼  The support of a Gaussian noise distribution is 

the entire space.

◼ Increase the area of each mode by adding 

noise.

◼ Different modes are connected by adding 

noise.

Score-Based Generative Model

https://miro.medium.com/v2/resize:fit:1400/1*gumPfXwQYkNnnlGxAGUlRA.png

◼ Limitations of vanilla score matching:

◼ Poorly defined for real-world data

◼ Inaccurate score estimation for low-

density region

◼ Poor sampling with large low-density 

region



Diffusion Models: Stochastic Differential Equation Perspective

The only unknown term is the score function.   

Train a neural network through score matching!

Probability Flow ODE: 

A deterministic reverse process

Exact Solution form of PF-ODE



Diffusion Models: Slow Inference Speed

How to speed up the diffusion generation?

◼ Reducing the number of function

evaluation (NFE). 

◼ Better Solvers.

◼ Adversarial post-training.

◼ Parallel Sampling.

◼ Distillation.

◼ Naïve distillation.

◼ Guided distillation.

◼ Score distillation.

◼ Consistency distillation.

◼ Rectification.



DPM-Solver
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Picard Iteration



Lower Bound of Picard Iteration = Sequential Denoising



Parareal Algorithm

Fine Solver (Parallel) Coarse Solver (Sequential)
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Understanding Diffusion Models from the PF-ODE path

We know the derivative w.r.t. time 𝑡. 

Discretized numerical solving. Naïve distillation.PF-ODE



Distillation Techniques: Progressive Distillation



Distillation Techniques: Consistency Distillation



Distillation Techniques: Phased Consistency Distillation



Application: AnimateLCM



Application: AnimateLCM



Consistency Training

Bootstrapping

Consistency Distillation

Consistency Training



Ground Truth of Score Estimation: Stable Consistency Tuning



Distillation Techniques: Score Distillation



Distillation Techniques: Score Distillation



Score Divergence Gradient Theorem

Simplify

Ignore



Application: Casual Vid



Distillation Techniques: Rectified Flow

Advantages:

◼ High-quality few-step generation.

◼ Flexibility on inference steps.

◼ Simple forms.



Distillation Techniques: Rectified Flow

◼ Linear interpolation.

◼ 𝑣-prediction.

◼ Rectification (Reflow).



Diffusion Models: A (relative) Unified Perspective

DDPM (Variance Preserving)

EDM (Variance Exploding)

Sub-VP 𝜎𝑡 = 1 − 𝛼𝑡
2

Rectified Flow 

(Flow Matching)
𝛼𝑡 = 𝑡 𝜎𝑡 = 1 − 𝑡



The Magic of Rectified Flow: Retraining with Matched Noise-Sample Pairs



Rectified Flow Training Is a Subset of Diffusion Training 



Rectified Diffusion: Extending Rectified Flow to General Diffusion Models



Rectified Diffusion: the Essential Training Target Is First-Order Approximated ODE

Important points of first-order approximated ODE:

◼ It has the same form of predefined diffusion 

forms.

◼ It can be inherently curved.

◼ It can be transformed into straight lines with 

timestep dependent scaling.



Rectified Diffusion Vs Rectified Flow



Rectified Diffusion Vs Rectified Flow

Rectified-Flow Rectified-Diffusion



Human Preference Learning

Three ways for Preference Optimization:

◼ Differential Reward

◼ Reinforcement Learning

◼ Direct Preference Optimization 

https://huyenchip.com/2023/05/02/rlhf.html



Reinforcement Learning

The generation process of generative models can be seen as Markov decision process (MDP)

◼ Large language models. 

◼ Token-by-token prediction.

◼ Each token sampling can be seen as an action following the implicitly defined policy.

◼ All the generated tokens can be seen as state.

◼ Reward Models: LLMs.

◼ Diffusion models.

◼ Step-by-step prediction.

◼ Each step can be seen as an action following the implicitly defined policy.

◼ Last denoised results can be seen as state.

◼ Reward models: VLMs or CLIP.



Direct Preference Optimization



Direct Preference Optimization



Differential Reward



Classifier-free guidance



Diffusion Negative Preference Optimization

To train Diffusion-NPO, we only need one line code.



Diffusion Negative Preference Optimization

We only need one line code for Negative Preference Optimization

◼ Reinforcement learning or differential reward

◼ Negating the output of reward model

◼ Direct preference optimization

◼ Switch the order of preference annotations



Diffusion Negative Preference Optimization



Diffusion Negative Preference Optimization
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Thank you!

fywang@link.cuhk.edu.hk

Fu-Yun Wang
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