

Rectified Diffusion: Straightness Is Not Your Need in Rectified Flow

Fu-Yun Wang1 Ling Yang2 Zhaoyang Huang1 Mengdi Wang3 Hongsheng Li1

¹MMLab@CUHK ²Peking University ³Princeton University

https://github.com/G-U-N/Rectified-Diffusion

Diffusion Models: Markovian Perspective

Assumption:
 $p(\mathbf{x}_{0:T}) = p(\mathbf{x}_T) \prod_{t=1}^T p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$ n

- Forward Process:
	- n $q(\boldsymbol{x}_t|\boldsymbol{x}_{t-1}) = \mathcal{N}(\boldsymbol{x}_t;\sqrt{\alpha_t}\boldsymbol{x}_{t-1},(1-\alpha_t)\mathbf{I})$
- $p(\bm x_T) = \mathcal{N}(\bm x_T; \bm 0, \mathbf{I})$ n
- Reverse Process:
	- $q(\bm{x}_t|\bm{x}_{t-1},\bm{x}_0) = \frac{q(\bm{x}_{t-1}|\bm{x}_t,\bm{x}_0)q(\bm{x}_t|\bm{x}_0)}{q(\bm{x}_{t-1}|\bm{x}_0)}$ n
- Maximum Likelihood Estimation (MLE)

is Equivalent to

 $\argmin_{\theta} \mathbb{E}_{t \sim U\{2,T\}} \left[\mathbb{E}_{q(\boldsymbol{x}_t|\boldsymbol{x}_0)} \left[D_{\mathrm{KL}}(q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t,\boldsymbol{x}_0) \parallel p_{\theta}(\boldsymbol{x}_{t-1}|\boldsymbol{x}^{\prime}) \right] \right]$

Diffusion Models: Stochastic Differential Equation Perspective

Probability Flow ODE:

A deterministic reverse process

$$
\mathrm{d} \mathbf{x} = \Big[\mathbf{f}(\mathbf{x},t) - \frac{1}{2}g(t)^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x})\Big] \mathrm{d} t
$$

Exact Solution form of PF-ODE

$$
\boldsymbol{x}_t = \frac{\alpha_t}{\alpha_s} \boldsymbol{x}_s - \alpha_t \int_{\lambda_s}^{\lambda_t} e^{-\lambda} \hat{\boldsymbol{\epsilon}}_{\theta}(\hat{\boldsymbol{x}}_{\lambda}, \lambda) \mathrm{d}\lambda.
$$

The only unknown term is the score function.

Train a neural network through score matching!

Diffusion Models: Slow Inference Speed

How to speed up the diffusion generation?

- Reducing the number of function evaluation (NFE).
	- **Better Solvers.**
	- Adversarial post-training.
	- Distillation.
		- n Naïve distillation.
		- n Guided distillation.
		- Score distillation.
		- Consistency distillation.
	- Rectification.

Understanding Diffusion Models from the PF-ODE path

We know the derivative w.r.t. time t .

Distillation Techniques: Progressive Distillation

Algorithm 2 Progressive distillation **Require:** Trained teacher model $\hat{\mathbf{x}}_n(\mathbf{z}_t)$ **Require:** Data set D **Require:** Loss weight function $w()$ **Require:** Student sampling steps N for K iterations do $\theta \leftarrow n$ \triangleright Init student from teacher while not converged do $\mathbf{x} \sim \mathcal{D}$ $t = i/N, i \sim Cat[1, 2, \ldots, N]$ $\epsilon \sim N(0,I)$ $\mathbf{z}_t = \alpha_t \mathbf{x} + \sigma_t \epsilon$ # 2 steps of DDIM with teacher $t'=t-0.5/N, \quad t''=t-1/N.$ $\mathbf{z}_{t'} = \alpha_{t'} \hat{\mathbf{x}}_{\eta}(\mathbf{z}_t) + \frac{\sigma_{t'}}{\sigma} (\mathbf{z}_t - \alpha_t \hat{\mathbf{x}}_{\eta}(\mathbf{z}_t))$ $\mathbf{z}_{t''} = \alpha_{t''} \hat{\mathbf{x}}_\eta(\mathbf{z}_{t'}) + \frac{\sigma_{t''}}{\sigma_{t'}} (\mathbf{z}_{t'} - \alpha_{t'} \hat{\mathbf{x}}_\eta(\mathbf{z}_{t'}))$ $\frac{\mathbf{z}_{t^{\prime\prime}}-(\sigma_{t^{\prime\prime}}/\sigma_{t})\mathbf{z}_{t}}{\alpha_{t^{\prime\prime}}-(\sigma_{t^{\prime\prime}}/\sigma_{t})\alpha_{t}}$ \triangleright Teacher $\hat{\mathbf{x}}$ target $\lambda_t = \log[\alpha_t^2/\sigma_t^2]$ $L_{\theta} = w(\lambda_t) \|\tilde{\mathbf{x}} - \hat{\mathbf{x}}_{\theta}(\mathbf{z}_t)\|_2^2$ $\theta \leftarrow \theta - \gamma \nabla_{\theta} L_{\theta}$ end while ⊳ Student becomes next teacher $\eta \leftarrow \theta$ $N \leftarrow N/2$ > Halve number of sampling steps end for

Distillation Techniques: Consistency Distillation

Algorithm 2 Consistency Distillation (CD) Input: dataset D , initial model parameter θ , learning rate η , ODE solver $\Phi(\cdot, \cdot; \phi)$, $d(\cdot, \cdot)$, $\lambda(\cdot)$, and μ $\theta^{-} \leftarrow \theta$ repeat Sample $\mathbf{x} \sim \mathcal{D}$ and $n \sim \mathcal{U}[\![1, N-1]\!]$ Sample $\mathbf{x}_{t_{n+1}} \sim \mathcal{N}(\mathbf{x}; t_{n+1}^2 \mathbf{I})$ $\hat{\mathbf{x}}_{t_n}^{\phi} \leftarrow \mathbf{x}_{t_{n+1}} + (t_n - t_{n+1}) \Phi(\mathbf{x}_{t_{n+1}}, t_{n+1}; \phi)$ $\mathcal{L}(\boldsymbol{\theta},\boldsymbol{\theta}^-;\boldsymbol{\phi})\leftarrow$ $\lambda(t_n)d(\boldsymbol{f_{\theta}}(\mathbf{x}_{t_{n+1}},t_{n+1}),\boldsymbol{f_{\theta}}-(\hat{\mathbf{x}}_{t_n}^{\phi},t_n))$ $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}^-; \boldsymbol{\phi})$ $\theta^- \leftarrow \text{stopgrad}(\mu\theta^- + (1-\mu)\theta)$ until convergence

Distillation Techniques: Phased Consistency Distillation

Algorithm 1 Phased Consistency Distillation with CFG-augmented ODE solver (PCD)

Input: dataset D, initial model parameter θ , learning rate η , ODE solver $\Psi(\cdot, \cdot, \cdot, \cdot)$, distance metric $d(\cdot, \cdot)$, EMA rate μ , noise schedule α_t , σ_t , guidance scale $[w_{\min}, w_{\max}]$, number of ODE step k, discretized timesteps $t_0 = \epsilon < t_1 < t_2 < \cdots < t_N = T$, edge timesteps $s_0 = t_0 < s_1 < s_2 < \cdots < s_M = t_N \in \{t_i\}_{i=0}^N$ to split the ODE trajectory into M sub-trajectories. Training data: $\mathcal{D}_{\mathbf{x}} = \{(\mathbf{x}, \mathbf{c})\}$ $\boldsymbol{\theta}^- \leftarrow \boldsymbol{\theta}$ repeat Sample $(z, c) \sim \mathcal{D}_z$, $n \sim \mathcal{U}[0, N - k]$ and $\omega \sim [\omega_{\min}, \omega_{\max}]$ Sample $\mathbf{x}_{t_{n+k}} \sim \mathcal{N}(\alpha_{t_{n+k}}z; \sigma^2_{t_{n+k}}\mathbf{I})$ Determine $[s_m, s_{m+1}]$ given n $\mathbf{x}_{t_n}^{\phi} \leftarrow (1+\omega) \Psi(\mathbf{x}_{t_{n+k}}, t_{n+k}, t_n, \mathbf{c}) - \omega \Psi(\mathbf{x}_{t_{n+k}}, t_{n+k}, t_n, \varnothing)$ $\tilde{\mathbf{x}}_{s_m} = \mathbf{f}_{\theta}^m(\mathbf{x}_{t_{n+k}}, t_{n+k}, c)$ and $\hat{\mathbf{x}}_{s_m} = \mathbf{f}_{\theta}-(\mathbf{x}_{t_n}^{\phi}, t_n, c)$
Obtain $\tilde{\mathbf{x}}_s$ and $\hat{\mathbf{x}}_s$ through adding noise to $\tilde{\mathbf{x}}_{s_m}$ and $\hat{\mathbf{x}}_{s_m}$ $\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}^-) = d(\tilde{\mathbf{x}}_{s_m}, \hat{\mathbf{x}}_{s_m}) + \lambda (\text{ReLU}(1 + \tilde{\mathbf{x}}_s) + \text{ReLU}(1 - \hat{\mathbf{x}}_s))$ $\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}(\theta, \theta^{-})$ $\theta^- \leftarrow$ stopgrad $(\mu \theta^- + (1 - \mu)\theta)$ until convergence

Distillation Techniques: Score Distillation

Distillation Techniques: Rectified Flow

Advantages:

- High-quality few-step generation.
- **n** Flexibility on inference steps.
- Simple forms.

Distillation Techniques: Rectified Flow

Diffusion Models: A (relative) Unified Perspective

The Magic of Rectified Flow: Retraining with Matched Noise-Sample Pairs

 $\qquad \qquad =\qquad$

Flow Matching Training Is a Subset of Diffusion Training

Algorithm 1 Flow Matching v -Prediction

Input:

Sample x_0 from the data distribution Sample time t from a predefined schedule or uniformly from $[0, 1]$ Sample noise ϵ from normal distribution Compute $\mathbf{x}_t : \mathbf{x}_t = (1-t) \cdot \mathbf{x}_0 + t \cdot \boldsymbol{\epsilon}$ Predict velocity \hat{v} using the model: \hat{v} = $Model(\mathbf{x}_t, t)$ Compute loss: $\mathcal{L} = \|\hat{\mathbf{v}} - (\mathbf{x}_0 - \boldsymbol{\epsilon})\|_2^2$ Backpropagate and update parameters

Algorithm 2 Diffusion Training ϵ -Prediction

Input: α_t , σ_t

Sample x_0 from the data distribution Sample time t from a predefined schedule or uniformly from $[0, 1]$ Sample noise ϵ from normal distribution Compute $\mathbf{x}_t : \mathbf{x}_t = \alpha_t \cdot \mathbf{x}_0 + \sigma_t \cdot \boldsymbol{\epsilon}$ Predict noise $\hat{\epsilon}$ using the model: $\hat{\epsilon}$ = $Model(\mathbf{x}_t, t)$ Compute loss: $\mathcal{L} = ||\hat{\epsilon} - \epsilon||_2^2$ Backpropagate and update parameters

Rectified Diffusion: Extending Rectified Flow to General Diffusion Models

Rectified Diffusion: the Essential Training Target Is First-Order ODE

Important Points of First-Order ODE:

It has the same form of predefined diffusion forms.

$$
\mathbf{x}_t = \alpha_t \mathbf{x}_0 + \sigma_t \boldsymbol{\epsilon}
$$

 \blacksquare It can be inherently curved.

It can be transformed into straight lines with timestep dependent scaling.

$$
\mathbf{y}_t = \frac{\alpha_t}{\sigma_t} \mathbf{x}_0 + \boldsymbol{\epsilon}
$$

Rectified Diffusion (Phased)

Rectified Diffusion Vs Rectified Flow

Rectified Diffusion Vs Rectified Flow

Rectified-Flow Rectified-Diffusion

Rectified Diffusion Vs Rectified Flow

References

- [1] Denoising Diffusion Probabilistic Models.
- [2] Denoising Diffusion Implicit Models.
- [3] Score-Based Generative Modeling through Stochastic Differential Equations.
- [4] Flow Matching for Generative Modeling.
- [5] Elucidating the Design Space of Diffusion-Based Generative Models.
- [6] DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps.
- [7] Discrete Flow Matching.
- [8] Consistency Models.
- [9] Consistency Models Made Easy.
- [10] Latent Consistency Models: Synthesizing High-Resolution Images with Few-step Inference.
- [11] Phased Consistency Model.
- [12] Multistep Consistency Models.
- [13] PeRFlow: Piecewise Rectified Flow as Universal Plug-and-Play Accelerator.
- [14] Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow.
- [15] InstaFlow: One Step is Enough for High-Quality Diffusion-Based Text-to-Image Generation.
- [16] StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis.
- [17] Stable Consistency Tuning: Understanding and Improving Consistency Models.
- [18] SwiftBrush : One-Step Text-to-Image Diffusion Model with Variational Score Distillation.
- [19] One-step Diffusion with Distribution Matching Distillation.
- [20] Progressive Distillation for Fast Sampling of Diffusion Models

Our Works

[1] Stable Consistency Tuning: Understanding and Improving Consistency Models.

[2] Rectified Diffusion: Straightness Is Not Your Need in Rectified Flow.

[3] Phased Consistency Model.

[4] AnimateLCM: Computation-Efficient Personalized Style Video Generation without Personalized Video Data.

Thank you!

Fu-Yun Wang

fywang@link.cuhk.edu.hk

