

Rectified Diffusion: Straightness Is Not Your Need in Rectified Flow

Fu-Yun Wang¹ Ling Yang² Zhaoyang Huang¹ Mengdi Wang³ Hongsheng Li¹

¹MMLab@CUHK ²Peking University ³Princeton University

https://github.com/G-U-N/Rectified-Diffusion

Diffusion Models: Markovian Perspective

- Assumption: $p(\boldsymbol{x}_{0:T}) = p(\boldsymbol{x}_T) \prod_{t=1}^T p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1} | \boldsymbol{x}_t)$
- Forward Process:
 - $q(\boldsymbol{x}_t | \boldsymbol{x}_{t-1}) = \mathcal{N}(\boldsymbol{x}_t; \sqrt{\alpha_t} \boldsymbol{x}_{t-1}, (1 \alpha_t) \mathbf{I})$
- Reverse Process:
- Maximum Likelihood Estimation (MLE)

is Equivalent to

 $\underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \mathbb{E}_{t \sim U\{2,T\}} \left[\mathbb{E}_{q(\boldsymbol{x}_t | \boldsymbol{x}_0)} \left[D_{\mathrm{KL}}(q(\boldsymbol{x}_{t-1} | \boldsymbol{x}_t, \boldsymbol{x}_0) \parallel p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1} | \boldsymbol{x}_t) \right] \right]$

Diffusion Models: Stochastic Differential Equation Perspective

Probability Flow ODE:

A deterministic reverse process

$$\mathrm{d}\mathbf{x} = \left[\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g(t)^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x})\right] \mathrm{d}t$$

Exact Solution form of PF-ODE

$$\boldsymbol{x}_t = rac{lpha_t}{lpha_s} \boldsymbol{x}_s - lpha_t \int_{\lambda_s}^{\lambda_t} e^{-\lambda} \hat{\boldsymbol{\epsilon}}_{ heta}(\hat{\boldsymbol{x}}_{\lambda}, \lambda) \mathrm{d}\lambda.$$

The only unknown term is the score function.

Train a neural network through score matching!

Diffusion Models: Slow Inference Speed

How to speed up the diffusion generation?

- Reducing the number of function evaluation (NFE).
 - Better Solvers.
 - Adversarial post-training.
 - Distillation.
 - Naïve distillation.
 - Guided distillation.
 - Score distillation.
 - Consistency distillation.
 - Rectification.

Understanding Diffusion Models from the PF-ODE path

We know the derivative w.r.t. time t.

Distillation Techniques: Progressive Distillation

Algorithm 2 Progressive distillation **Require:** Trained teacher model $\hat{\mathbf{x}}_n(\mathbf{z}_t)$ **Require:** Data set \mathcal{D} **Require:** Loss weight function w()**Require:** Student sampling steps N for K iterations do $\theta \leftarrow n$ ▷ Init student from teacher while not converged do $\mathbf{x}\sim \mathcal{D}$ $t = i/N, \ i \sim Cat[1, 2, \dots, N]$ $\epsilon \sim N(0, I)$ $\mathbf{z}_t = \alpha_t \mathbf{x} + \sigma_t \epsilon$ # 2 steps of DDIM with teacher $t = t - 0.5/N, \quad t'' = t - 1/N$ $\mathbf{z}_{t'} = lpha_{t'} \hat{\mathbf{x}}_{\eta}(\mathbf{z}_t) + rac{\sigma_{t'}}{\sigma_{t'}} (\mathbf{z}_t - lpha_t \hat{\mathbf{x}}_{\eta}(\mathbf{z}_t))$ $\mathbf{z}_{t''} = \alpha_{t''} \hat{\mathbf{x}}_{\eta}(\mathbf{z}_{t'}) + \overline{\frac{\sigma_{t''}}{\sigma_{t'}}} (\mathbf{z}_{t'} - \alpha_{t'} \hat{\mathbf{x}}_{\eta}(\mathbf{z}_{t'}))$ $\frac{\mathbf{z}_{t''} - (\sigma_{t''} / \sigma_t) \mathbf{z}_t}{\alpha_{t''} - (\sigma_{t''} / \sigma_t) \alpha_t}$ \triangleright Teacher $\hat{\mathbf{x}}$ target $\lambda_t = \log[\alpha_t^2/\sigma_t^2]$ $L_{\theta} = w(\lambda_t) \| \tilde{\mathbf{x}} - \hat{\mathbf{x}}_{\theta}(\mathbf{z}_t) \|_2^2$ $\theta \leftarrow \theta - \gamma \nabla_{\theta} L_{\theta}$ end while ▷ Student becomes next teacher $\eta \leftarrow \theta$ $N \leftarrow N/2$ > Halve number of sampling steps end for

 $\square)))$

Distillation Techniques: Consistency Distillation

Algorithm 2 Consistency Distillation (CD)Input: dataset \mathcal{D} , initial model parameter $\boldsymbol{\theta}$, learning rate η , ODE solver $\Phi(\cdot, \cdot; \boldsymbol{\phi})$, $d(\cdot, \cdot)$, $\lambda(\cdot)$, and μ $\boldsymbol{\theta}^- \leftarrow \boldsymbol{\theta}$ repeatSample $\mathbf{x} \sim \mathcal{D}$ and $n \sim \mathcal{U}[\![1, N - 1]\!]$ Sample $\mathbf{x}_{t_{n+1}} \sim \mathcal{N}(\mathbf{x}; t_{n+1}^2 \mathbf{I})$ $\hat{\mathbf{x}}_{t_n}^{\boldsymbol{\phi}} \leftarrow \mathbf{x}_{t_{n+1}} + (t_n - t_{n+1})\Phi(\mathbf{x}_{t_{n+1}}, t_{n+1}; \boldsymbol{\phi})$ $\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}^-; \boldsymbol{\phi}) \leftarrow$ $\lambda(t_n)d(\boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x}_{t_{n+1}}, t_{n+1}), \boldsymbol{f}_{\boldsymbol{\theta}^-}(\hat{\mathbf{x}}_{t_n}^{\boldsymbol{\phi}}, t_n))$ $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}^-; \boldsymbol{\phi})$ $\boldsymbol{\theta}^- \leftarrow \operatorname{stopgrad}(\mu \boldsymbol{\theta}^- + (1 - \mu) \boldsymbol{\theta})$ until convergence

Distillation Techniques: Phased Consistency Distillation

Algorithm 1 Phased Consistency Distillation with CFG-augmented ODE solver (PCD)

Input: dataset \mathcal{D} , initial model parameter $\boldsymbol{\theta}$, learning rate η , ODE solver $\Psi(\cdot, \cdot, \cdot, \cdot)$, distance metric $d(\cdot, \cdot)$, EMA rate μ , noise schedule α_t , σ_t , guidance scale $[w_{\min}, w_{\max}]$, number of ODE step k, discretized timesteps $t_0 = \epsilon < t_1 < t_2 < \cdots < t_N = T$, edge timesteps $s_0 = t_0 < s_1 < s_2 < \cdots < s_M = t_N \in \{t_i\}_{i=0}^N$ to split the ODE trajectory into M sub-trajectories. Training data : $\mathcal{D}_{\mathbf{x}} = \{(\mathbf{x}, \mathbf{c})\}$ $\theta^- \leftarrow \theta$ repeat Sample $(\boldsymbol{z}, \boldsymbol{c}) \sim \mathcal{D}_{\boldsymbol{z}}, n \sim \mathcal{U}[0, N-k]$ and $\omega \sim [\omega_{\min}, \omega_{\max}]$ Sample $\mathbf{x}_{t_{n+k}} \sim \mathcal{N}(\alpha_{t_{n+k}} \mathbf{z}; \sigma_{t_{n+k}}^2 \mathbf{I})$ Determine $[s_m, s_{m+1}]$ given n $\mathbf{x}_{t_n}^{\boldsymbol{\phi}} \leftarrow (1+\omega)\Psi(\mathbf{x}_{t_{n+k}}, t_{n+k}, t_n, \boldsymbol{c}) - \omega\Psi(\mathbf{x}_{t_{n+k}}, t_{n+k}, t_n, \boldsymbol{\varnothing})$ $\mathbf{\tilde{x}}_{s_m} = \mathbf{f}_{\theta}^m(\mathbf{x}_{t_{n+k}}, t_{n+k}, \mathbf{c}) \text{ and } \mathbf{\hat{x}}_{s_m} = \mathbf{f}_{\theta}^{-}(\mathbf{x}_{t_n}^{\phi}, t_n, \mathbf{c})$ Obtain $\mathbf{\tilde{x}}_s$ and $\mathbf{\hat{x}}_s$ through adding noise to $\mathbf{\tilde{x}}_{s_m}$ and $\mathbf{\hat{x}}_{s_m}$ $\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}^{-}) = d(\tilde{\mathbf{x}}_{s_m}, \hat{\mathbf{x}}_{s_m}) + \lambda(\text{ReLU}(1 + \tilde{\mathbf{x}}_s) + \text{ReLU}(1 - \hat{\mathbf{x}}_s))$ $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}^{-})$ $\boldsymbol{\theta}^- \leftarrow \operatorname{stopgrad}(\mu \boldsymbol{\theta}^- + (1-\mu)\boldsymbol{\theta})$ until convergence

Distillation Techniques: Score Distillation

Algorithm 1 SwiftBrush Distillation 1: **Require**: a pretrained text-to-image teacher ϵ_{ub} , a LoRA teacher ϵ_{ϕ} , a student model f_{θ} , two learning rates η_1 and η_2 , a weighting function ω , a prompts dataset Y, the maximum number of time steps T and the noise schedule $\{(\alpha_t, \sigma_t)\}_{t=1}^T$ of the teacher model 2: Initialize: $\phi \leftarrow \psi, \theta \leftarrow \psi$ while not converged do 3: Sample input noise $z \sim \mathcal{N}(0, I)$ 4: Sample text caption input $y \sim Y$ 5: Compute student output $\hat{x}_0 = f_{\theta}(z, y)$ 6: Sample timestep $t \sim \mathcal{U}(0.02T, 0.98T)$ 7: Sample added noise $\epsilon \sim \mathcal{N}(0, I)$ 8: Compute noisy sample $\hat{x}_t = \alpha_t \hat{x}_0 + \sigma_t \epsilon$ 9: $\theta \leftarrow \theta - \eta_1 \left[\omega(t) \left(\epsilon_{\psi}(\hat{x}_t, t, y) - \epsilon_{\phi}(\hat{x}_t, t, y) \right) \frac{\partial \hat{x}_0}{\partial \theta} \right]$ 10: Sample timestep $t' \sim \mathcal{U}(0, T)$ 11: Sample added noise $\epsilon' \sim \mathcal{N}(0, I)$ 12: Compute noisy sample $\hat{x}_{t'} = \alpha_{t'} \hat{x}_0 + \sigma_{t'} \epsilon'$ 13: $\phi \leftarrow \phi - \eta_2 \nabla_{\phi} \| \epsilon_{\phi}(\hat{x}_{t'}, t', y) - \epsilon' \|^2$ 14: 15: end while 16: **return** trained student model f_{θ}

Distillation Techniques: Rectified Flow

Advantages:

- High-quality few-step generation.
- Flexibility on inference steps.
- Simple forms.

Distillation Techniques: Rectified Flow

Linear interpolation. ---- Transport Cost $X_t = tX_1 + (1 - t)X_0$ Straightness \bullet *v*-prediction. 10 Reflow Step $\mathrm{d}X_t = (X_1 - X_0)\mathrm{d}t$ (a)The 1st rectified flow \boldsymbol{Z}^1 (b) Reflow Z^2 (c) Reflow Z^3 (d) Transport cost, $\boldsymbol{Z}^1 = \texttt{RectFlow}((X_0, X_1))$ $\boldsymbol{Z}^2 = \texttt{RectFlow}((Z_0^1, Z_1^1))$ $\boldsymbol{Z}^3 = \texttt{RectFlow}((Z_0^2, Z_1^2))$ Straightness Rectification (Reflow).

Diffusion Models: A (relative) Unified Perspective

The Magic of Rectified Flow: Retraining with Matched Noise-Sample Pairs

Algorithm 1 Flow Matching <i>v</i> -Prediction	Algorithm 3 Rectified Flow <i>v</i> -Prediction				
Input:	Input: noise-data pair $(\boldsymbol{\epsilon}, \hat{\mathbf{x}}_0)$				
Sample \mathbf{x}_0 from the data distribution	Sample x_0 from the data distribution				
Sample time t from a predefined schedule or	Sample time t from a predefined schedule or				
uniformly from $[0, 1]$	uniformly from $[0, 1]$				
Sample noise ϵ from normal distribution	Sample noise ϵ from normal distribution				
Compute $\mathbf{x}_t : \mathbf{x}_t = (1-t) \cdot \mathbf{x}_0 + t \cdot \boldsymbol{\epsilon}$	Compute $\mathbf{x}_t : \mathbf{x}_t = (1-t) \cdot \hat{\mathbf{x}}_0 + t \cdot \boldsymbol{\epsilon}$				
Predict velocity \hat{v} using the model: \hat{v} =	Predict velocity \hat{v} using the model: \hat{v} =				
$Model(\mathbf{x}_t, t)$	$Model(\mathbf{x}_t, t)$				
Compute loss: $\mathcal{L} = \ \hat{\boldsymbol{v}} - (\mathbf{x}_0 - \boldsymbol{\epsilon})\ _2^2$	Compute loss: $\mathcal{L} = \ \hat{\boldsymbol{v}} - (\hat{\mathbf{x}}_0 - \boldsymbol{\epsilon})\ _2^2$				
Backpropagate and update parameters	Backpropagate and update parameters				

Flow Matching Training Is a Subset of Diffusion Training

Algorithm 1 Flow Matching *v*-Prediction

Input:

Sample \mathbf{x}_0 from the data distribution Sample time t from a predefined schedule or uniformly from [0, 1]Sample noise $\boldsymbol{\epsilon}$ from normal distribution Compute $\mathbf{x}_t : \mathbf{x}_t = (1 - t) \cdot \mathbf{x}_0 + t \cdot \boldsymbol{\epsilon}$ Predict velocity $\hat{\boldsymbol{v}}$ using the model: $\hat{\boldsymbol{v}} =$ Model (\mathbf{x}_t, t) Compute loss: $\mathcal{L} = \|\hat{\boldsymbol{v}} - (\mathbf{x}_0 - \boldsymbol{\epsilon})\|_2^2$ Backpropagate and update parameters

Algorithm 2 Diffusion Training ϵ -Prediction

Input: α_t, σ_t

Sample \mathbf{x}_0 from the data distribution Sample time t from a predefined schedule or uniformly from [0, 1]Sample noise $\boldsymbol{\epsilon}$ from normal distribution Compute $\mathbf{x}_t : \mathbf{x}_t = \alpha_t \cdot \mathbf{x}_0 + \sigma_t \cdot \boldsymbol{\epsilon}$ Predict noise $\hat{\boldsymbol{\epsilon}}$ using the model: $\hat{\boldsymbol{\epsilon}} =$ Model (\mathbf{x}_t, t) Compute loss: $\mathcal{L} = \|\hat{\boldsymbol{\epsilon}} - \boldsymbol{\epsilon}\|_2^2$ Backpropagate and update parameters

Rectified Diffusion: Extending Rectified Flow to General Diffusion Models

Algorithm 4 Rectified Diffusion ϵ -Prediction					
Input: noise-data pair $(\epsilon, \hat{\mathbf{x}}_0), \alpha_t, \sigma_t$ Sample \mathbf{x}_0 from the data distribution Sample time <i>t</i> from a predefined schedule or uniformly from $[0, 1]$ Sample noise ϵ from normal distribution					
Compute $\mathbf{x}_t : \mathbf{x}_t = \alpha_t \cdot \hat{\mathbf{x}}_0 + \sigma_t \cdot \boldsymbol{\epsilon}$ Predict noise $\hat{\boldsymbol{\epsilon}}$ using the model: $\hat{\boldsymbol{\epsilon}} =$ Model (\mathbf{x}_t, t) Compute loss: $\mathcal{L} = \ \hat{\boldsymbol{\epsilon}} - \boldsymbol{\epsilon}\ _2^2$ Backpropagate and update parameters					

Rectified Diffusion: the Essential Training Target Is First-Order ODE

Important Points of First-Order ODE:

It has the same form of predefined diffusion forms.

$$\mathbf{x}_t = lpha_t \mathbf{x}_0 + \sigma_t oldsymbol{\epsilon}$$

■ It can be inherently curved.

It can be transformed into straight lines with timestep dependent scaling.

$$\mathbf{y}_t = rac{lpha_t}{\sigma_t} \mathbf{x}_0 + \boldsymbol{\epsilon}$$

Rectified Diffusion (Phased)

(v))

Rectified Diffusion Vs Rectified Flow

 $\left(\left(\right) \right)$

Rectified Diffusion Vs Rectified Flow

Rectified-Flow

Rectified-Diffusion

Rectified Diffusion Vs Rectified Flow

Method	Res.	Time (\downarrow)	# Steps	# Param.	FID (\downarrow)	CLIP (†
SDv1-5+DPMSolver (Upper-Bound) (Lu et al., 2022)	512	0.88s	25	0.9B	20.1	0.318
Rectified Flow (Liu et al., 2023)	512	0.88s	25	0.9B	21.65	0.315
Rectified Flow (Liu et al., 2023)	512	0.09s	1	0.9B	47.91	0.272
Rectified Flow (Liu et al., 2023)	512	0.13s	2	0.9B	31.35	0.296
Rectified Diffusion (Ours)	512	0.09s	25	0.9B	21.28	0.316
Rectified Diffusion (Ours)	512	0.09s	1	0.9B	27.26	0.295
Rectified Diffusion (Ours)	512	0.13s	2	0.9B	22.98	0.309
Rectified Flow (Distill) (Liu et al., 2023)	512	0.09s	1	0.9B	23.72	0.302
Rectified Flow (Distill) (Liu et al., 2023)	512	0.13s	2	0.9B	73.49	0.261
Rectified Flow (Distill) (Liu et al., 2023)	512	0.21s	4	0.9B	103.48	0.245
Rectified Diffusion (CD) (Ours)	512	0.09s	1	0.9B	22.83	0.305
Rectified Diffusion (CD) (Ours)	512	0.13s	2	0.9B	21.66	0.312
Rectified Diffusion (CD) (Ours)	512	0.21s	4	0.9B	21.43	0.314
PeRFlow (Yan et al., 2024)	512	0.21s	4	0.9B	22.97	0.294
Rectified Diffusion (Phased) (Ours)	512	0.21s	4	0.9B	20.64	0.311
PeRFlow-SDXL (Yan et al., 2024)	1024	0.71s	4	3B	27.06	0.335
Rectified Diffusion-SDXL (Phased) (Ours)	1024	0.71s	4	3B	25.81	0.341

References

- [1] Denoising Diffusion Probabilistic Models.
- [2] Denoising Diffusion Implicit Models.
- [3] Score-Based Generative Modeling through Stochastic Differential Equations.
- [4] Flow Matching for Generative Modeling.
- [5] Elucidating the Design Space of Diffusion-Based Generative Models.
- [6] DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps.
- [7] Discrete Flow Matching.
- [8] Consistency Models.
- [9] Consistency Models Made Easy.
- [10] Latent Consistency Models: Synthesizing High-Resolution Images with Few-step Inference.
- [11] Phased Consistency Model.
- [12] Multistep Consistency Models.
- [13] PeRFlow: Piecewise Rectified Flow as Universal Plug-and-Play Accelerator.
- [14] Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow.
- [15] InstaFlow: One Step is Enough for High-Quality Diffusion-Based Text-to-Image Generation.
- [16] StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis.
- [17] Stable Consistency Tuning: Understanding and Improving Consistency Models.
- [18] SwiftBrush : One-Step Text-to-Image Diffusion Model with Variational Score Distillation.
- [19] One-step Diffusion with Distribution Matching Distillation.
- [20] Progressive Distillation for Fast Sampling of Diffusion Models

Our Works

[1] Stable Consistency Tuning: Understanding and Improving Consistency Models.

[2] Rectified Diffusion: Straightness Is Not Your Need in Rectified Flow.

[3] Phased Consistency Model.

[4] AnimateLCM: Computation-Efficient Personalized Style Video Generation without Personalized Video Data.

Thank you!

Fu-Yun Wang fywang@link.cuhk.edu.hk

