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Motivation

> Rectified flow, a widely recognized solution, improves generation speed by straight-
ening the ODE path.

> The proposed "rectification” technique for enhancing the quality of few-step gen-
eration is deemed viable solely for linear interpolation forms.

> This paper investigates what is most essential about rectified flow.

Training Efficiency Comparison

1-step FID and CLIP Score of Rectified Diffusion over Training Iterations
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1-step performance of rectified diffusion significantly surpasses the 1-step perfor-
mance of rectified flow within only 20,000 iterations with batch size 128 (only 8%
trained images of rectified flow) and consistently grows with more training iterations.

Effectiveness of Classifier-Free Guidance.
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Rectified Diffusion: Straightness Is Not Your Need in Rectified Flow

ODE trajectory and prediction of diffusion models
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ODE trajectory and prediction of consistency models
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ODE trajectory and prediction of rectified diffusion
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ODE trajectory and prediction comparison of consistency models and rectified diffusion. Since it is difficult to visually tell whether a
curved ODE path satisfies first-order approximate property, we apply straight lines for more clear demonstration.

Method Compari

son

> Rectified diffusion extending the application form of rectified flow
by identifying the straightness is not the essential training target of
rectified flow. Overall, rectified diffusion is simpler, stronger, and

more general.

> Simpler: Rectified diffusion keeps everything of the pretrained dit-
fusion models unchanged, including noise schedulers, prediction
types, network architectures, and even training and inference code.
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We contend that rectified flow’s efficacy arises from leveraging a pretrained diffusion model to obtain noise-sample pairs, subsequently
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> Stronger: \WWe have no gap in prediction type
and diffusion form gap between the pretraining
and retraining (rectification). This allows for great
improvements in training efficiency.

> General: \We show that rectification is suitable
for general diffusion forms, which extends the

scope of rectification for general diffusion forms.
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retrained with these pairs. Moreover, we assert that straightness becomes a nonessential training objective when expanding the design
space beyond linear interpolating diffusion to broader diffusion forms. Instead, we propose the critical training goal is achieving a
first-order approximate ODE path, minimizing high-order discretization errors during inference.
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Prompt-3: “Image: A goat wearing a thick, oversized winter coat and a scarf, standing on top of a snowy mountain peak. The goat is shivering so intensely that its teeth are chattering loudly, causing tiny icicles to break off its

beard and fall to the ground, creating a tinkling sound as they shatter.”
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