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> Diffusion models excel in image generation, but those trained on vast, uncurated
datasets often produce results that diverge from human preferences. Various
fine-tuning techniques have improved alignment with human expectations.

> We contend that current alignment methods overlook the importance of managing
negative-conditional outputs, reducing their ability to prevent unwanted results.
To address this, we introduce Diffusion-NPO, a simple yet highly effective solution.
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NPO augments the resolution of high-frequency details in generated outputs, while optimizing color and lighting to better correspond 2
with human perceptual preferences. Furthermore, NPO moderately enhances the compositional integrity of the resulting images. 2
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> Our crucial insight is that training such a negative preference aligned > Inference of Diffusion-NPO: [everaging
model requires no new training strategies or datasets, only minor classifier-free guidance, we apply a preference-
| modifications to existing methods. aligned model for conditional outputs and c
3 > Training of Diffusion-NPO. In essence, all strategies can be per- a negatively aligned model for negative- B
N ceived as reversing the order of image pairs in the collected prefer- conditional outputs to maximize preference %
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